If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144^2+b^2=225^2
We move all terms to the left:
144^2+b^2-(225^2)=0
We add all the numbers together, and all the variables
b^2-29889=0
a = 1; b = 0; c = -29889;
Δ = b2-4ac
Δ = 02-4·1·(-29889)
Δ = 119556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{119556}=\sqrt{2916*41}=\sqrt{2916}*\sqrt{41}=54\sqrt{41}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{41}}{2*1}=\frac{0-54\sqrt{41}}{2} =-\frac{54\sqrt{41}}{2} =-27\sqrt{41} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{41}}{2*1}=\frac{0+54\sqrt{41}}{2} =\frac{54\sqrt{41}}{2} =27\sqrt{41} $
| 6=3y+24 | | 3(-2u-20)=-6u+7 | | 16=32p | | 31x=-(135+4= | | 2x-5+20+x=60 | | 3(x+2)=12+x | | 12+n/36=1 | | 15^x+6=4 | | 8z÷6=7z+4 | | -10x=-6(4+3x)= | | 1600+100h=2600 | | 5k-4=1 | | 6x+5(4x-18)=66 | | 8+3.5x=16 | | 8+9a=-73 | | 1600+100h=3400 | | 7x+3(x-2)-4x=8 | | 6x+2=5x-2 | | 2.–3=5–4x | | 2x+6=7x−2 | | 20+5x=95 | | 140+40x=180+20x | | 4/3x+5/3=7+1/2x | | 10x=68-2(4-2x)= | | 9x+9=153 | | 360=-185n | | 148=5x+6(3x-6) | | 40+12k=-8k-26 | | x2–3.45x+2.16=0 | | 3x+3=2(7x-15)= | | -280-4h=-480 | | x4+4x2-60=0 |